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ABSTI,IACT

An open loop optimal control algorithm is develolxZd fl_r

general flexible structures, based on Laplace transfoml

methods. A distributed parameter model of the structure is first

presented, followed by a derivation of the optimal control

algorithm. The control inputs are expressed in terms of their
Fourier series expansions, so that a numerical solution can be

easily obtained. The algorithm deals directly with tile

transcendental transfer functions from control inputs to oulputs

of interest, and slmctural deformation penalties, as well as
penalties on control effort, are inchtded in the formulation. The

algorithm is applied to several structures of increasing

complexity to demonstrate its generalily.

1. INTI',ODUCTIQN

The control of large flexible structures has become an

important issue in recent years, primarily in the aerospace
industry.l As larger stntctures continue to be deployed in

space, the effects of control-structure interaction arc becoming

increasingly important. For example, stringent pointing

requirements for space-based antermae make it necessary to
isolate and suppress unwanted stntctural vibration caused by

both slewing maneuvers and exogenous disturbances.
Consequently, it becomes necessary to model struclural

flexibility when developing control laws for these types of
structures.

Becattse disturbances .and control forces generally act at
discrete points on the stntcture, structural responses tend to

exhibit wave propagation characteristics. Traditional finite

element codes are unable to capture the high frequency behavior
of such structures, due primarily to the spatial discrctization

asmciated with lumped parameter models. This limitation
makes it particularly difficult to study the propagation of

flexural waves within stntctures, since an extremely fine

discretization is required to preserve the lcu:al wave-like

characteristics of the disturbances. To overcome this problem,

this paper develops a distributed parameter, system-based
model, which deals directly with the governing partial

differential equations that describe the structure.

Given the continuum m,,xtel of a flexible structure, there

remains the issue of identifying control methodologies that take
advantage of the additional high frequency information

available therein. Tzafestas 2 develops a dislributed parameter

analogue of the linear quadratic regulator theory. A distributed
parameter Riccati equation, expressed in terms of spatial

differentia| operators, is presented. Miller, llall, and you
Flotow 3 develop optimal control laws for power flow at

structural junctions based on a travelling wave approach. The

effect of the localized controller is to modify the wave scattering
matrix at the junction in a way that minimizes the power
flowing from the junction. MacMartin and 1lall 4 consider
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optimal control of power flow in uncertain structures based on

an 11 cost criterion. Closed-loop stability is guaranteed by

Ininimizing the maximum power imparted to the suucture over

all frequencies. "File optimal distributed control of a rigid

spacecraft with flexible appendages is discussed by
Brcakwcll. 5

Skaar 6 presents closed-form opcn loop optimal control

solutions for a simple structure. The cost function considered
has the fonll:

tf

(t)

where n represents the control input, and kl and k2 are

constants. Terminal and integrated penalties on the structural
defoimalions ,are nol pcmfittcd. Rather, the terminal constraints

are adjoined to the cost function with Lagrangc multipliers.

The exclusion of defonnational pcnallies makes it possible to

derive analytical sohtlions for certain types of nmneuvers.
Otherwise, the optimal control solution can, in general, only bc

obtained by numerical methods.

Analytical resuhs are available for only the simplest of

distributed parameter models, containing very few flcxil)ie
elements. More often, a complex structure, such as a truss

beam, is replaced by at single equivalent member in the

coiltinuutl-t model. Such an approximation is usually accurate at

low flequencies only. For general structures, the structural
responses must bc calculated numerically. The convolution

inlegml representation technique developed by Skaar is

generalized in this paper to handle atrbitrary structural
configurations.

A review of tile conlinuunl modeling approach is

presented in section 2. The optimal control fornmlation is

developed in section 3. Several examples of this method,
applied to structures of increasing complexity, are then

presented in section 4. Conclusions and recommendations can
bc found in section 5.

2. STRUCTURAL MODELING

2.1 Modeling of Flexible Elements

Traditional approaches for modcting compIex structures

have relied on finite element modeling techniques. This
approach idealizes a structure as an assembly of many small

pieces which are constrained to move together in a manner
consistent with the internal elastic behavior of the tmderlying

conli,mum model. These techniques are powerful and widely

used. ! lowever, Ihey suffer from various modeling
idealizations which limit the accuracy of behavior predictions,
particularly for high frequency.

In order to better model the high frequency behavior of
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elastic frame-like structures, a continuum approach is presented
in this paper which overcomes the conventional limitations of
traditional finite clement modeling techniques. The continuum
method (also known as the exact finite element, distributed
p_uameter, or dynamic stiffness methcvJ), deals directly with the
governing partial differential equations for tile individual elastic
elements to elirninate the explicit time dependence in the
equations of motion. The Laplace transfom_ is employed to
convert the governing partial differential equations into ordinary
differential equations in the spatial dimension. For common
element models (e.g., rods in torsion, Bemoulli-Euler beams in
bending), simple analytical solutions to these equations exist.
The resulting solutions ,are explicit functions of the generally
complex frequency parameter, s, which has been introduced
through the application of the Laplace trausfom_ technique.

As an example, considcr the case of a rod in torsion,
shown in Fig. 1. The governing partial differcntial equation is

GJO"(x,t) + mr2(j(x,t) = x(x,t)

where 0 is the cross sectional angle of twist, GJ is the torsional
rigidity, m is the mass per unit length, r is the cross sectional
radius of gyration, ( )'=3( )/Ox, ( )=_)( )/Ot, and x is the
distributed torque. Applying the Laplace transfonrt, we obtain

0"(x,s) + GJ 0(x,s) = 0

where initial conditions and distributed forcing along Ihe
element have been temporarily neglected. The general solution
follows as:

0(x,s) = A(s) cos 13x + B(s) sin 13x, _2 mr2= -_- s2 (4)

where the functions A(s) and B(s) depend on the constraints
imposed at the boundaries of the element. To simplify the
mathematical developments, a structural state vector is defined
for the elastic element as follows:

= F0(x,s) qy(x,s)
LT(x,s) J

where T rcpresents the net torque resultant along the rod. With
knowledge of the state at one boundary of the element, it is IheJ'J
possible to determine the state at any internal location. A
frequency-dependant spatial transition matrix is used to
propagate the system state to arbitrary clement locations. Its
transcendental elements can be thought of as spatially varying
transfer functions. For this example, the transition matrix can
be shown to be

[ ]cosl3,, _ sin px
_(x,s) = - GJ_ sin_3x cos 13x

y(x,s) = _(x,s) y(0,s) (7)

and

Alteruatively, when the displacements at the boundaries are

known, they can be related to the forces. This is accomplished
by a dynamic stiffness matrix. Its name derives from the
stiffness matrix associated with the traditional finite element
method. For the rod in torsion, this matrix is given by

K(s) = G____[cos13I -1]sin _]l - 1 COS 131
(8)

where 1 is the length of the rod.

In addition to torsional rods, the formt,lation also
handles Euler beams in bending in two directions and axial
rods. Timoshenko beams can also be included as continuum
elements.

Because the continuum method treats each elastic

(2) member as a single element, no spatial discretization is
required. This is in marked contrast with traditional finite
element methods, where each element must be lumped into
several segments. As a result, the continuum model is valid at
all frequencies, insofar as the partial differential equation
represents the actual physical structure. In contrast, the spatial
discretization associated with the finite element approach creates
a computational burden for even the simplest of structures (each

(3) flexible element is typically broken down into more than ten
segments). This significant reduction in the number of discrete
modeling elements required makes the continuum method more
attractive from a computational point of view.

Another advantage to the frequency domain modeling
approach is the ease with which damping is incorporated into
the structural model. For internal damping (where energy is
dissipated as heat within the structural elements) the static
bending, axial or torsional stiffness is replaced by a complex
valued function of the complex frequency. The functional
relationship depends on the type of damping modeled. For
example, a fractional derivative damping model scales the static
stiffness by the square root of the complex frequency. 7 This
type of damping model is extremely difficult to implement in
time domain fomaulations, and requires a knowledge of the

(5) entire past history of the deformation of the structural element.
For external damping (where structural energy is dissipated to
the surroundings) the mass per unit length is replaced by a
frequency-dependant parameter. 7

(6)

2.2 Assembly of Elements

The assembly of flexible elements into a complex
frame-like structure is accomplished using the mefllod of
local/global coordinates, 7 which is implemented in most finite
element software. The structure to be modeled is divided into a

set of flexible elements and a set of rigid joints, which attach to
any number of flexible elements at their respective boundaries,
as shown in Fig. 2. External forces are applied at the joints
only, but the deformation of the structure is available at all
points. (The case of a concentrated force applied within a

Distributed

Torque
/ G J,rrl,r constant

I _....,
I_ L ,,.._!"- I

Fig. l: Examplc of a distributedparamctcrclcmcnt: a rod in torsion. Fig. 2: Generic framc-like structure.
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flexible element is treated by breaking the member into two
continuous elements connected by a masslessjoint. Modeling
distributed forcing is somewhat more difficult.) Massive joints
are modeled by dynamic stiffness matrices as well, so that their
contribution to the structural response at all frequencies is
retained.

The topology of the structure is given by a connectivity
matrix, which relates the local displacements of d_e structural
elements (both flexible and rigid) to a set of global
displacements which uniquely describe the location and
orientation of all .joints in tbe structure. The applied forces at
the.joints are defined in a dual re:tuner, so that for every global
displacement there exists a global forcing input at the same
point and in the same direction. It is then a simple matter to
compute d_e dynamic stiffness matrix for the structure as a
whole at any given complex frequency. The individual
stiffness matrices are first ,arranged in a large block diagonal
matrix. This matrix is then post- and pre-multiplied by the
connectivity matrix and its transpose, respectively, resulting in
the system dynamic stiffness matrix.

Because the dynamic stiffness matrix is tran_endental
in nature, computing natural frequencies is not a simple matter
of solving an eigenvalue problem, as is the case for the finite
element approach. Rather, the stiffness matrix must be
computed at many frequencies in order to gradually converge
on each modal frequency. However, a powerful algorithm is
available which rapidly converges on these eigenfrequcucies. 8
The algorithm works for undamped systems only, and
additional root-searching algorithms must be employed when
structural damping is modeled. 7

The system dynamic stiffness matrix can be inverted, if
desired, yielding the dynamic flexibility matrix for the
structure. Its elements can be thought of as transfer functions
from the joint forces to the joint displacements or as admittance
functions. This flexibility matrix, in conjunction with the
flexible element spatial transition matrices, enables the
straightforward calculation of the transfer function from any

joint force to any point on the structure.

2.3 Inverse Lanlace Transforlq

In the frequency domain, tbe responses at various
locations within a linear elastic structure to multiple control
inputs are deternlined by exploiting the principle of
superposition. The set of responses, yi(s), are expresscd as

m
Yi(s) = Z gij(s) uj(s), i= 1..... r (9)

j=l

where gii(s) is the transfer function flom the j'th input, ui(s), to
the i'th output, yi(s). These equations can be expressed l'il
more compact form using matrix notation:

y(s) = G(s)u(s) (10)

The matrix G(s) is the dynamic flexibility matrix for the given
structure, or some partition of it, depending on the inputs and
outputs considered.

The time response vector corresponding to y(s) is
available via the inverse Laplace transform, given by

c£4-j_

y(t) 2_j a-
= :-:. y(s) eStds (11)

where the integration path is known as the Bromwich contour.9

For finite dimensional systems, a residual expansion is used in
lieu of Eq. (11) to compute the time responses analytically.

The same can be done for distributed parameter systems, except
that the expansion has an infinite number of temps and must
therefore be truncated at some point. I lowever, greater
numerical accuracy is possible by working with Eq. (I 1)
directly. The frequency domain response is tabulated for
values of complex frcquency equally spaced along the
Bromwich contour, and a numerical procedure converts this
data into a response history evaluated at equal spaces in time. t0

Because this approach utilizes frequency domain
representations of the control inputs, it circumvents the
computationally expensive calculation of convolution integrals.
Furthermore, signals that cannot be represented by finite
dimensional state space models are easily handled in the
frequency domain. For example, the implementation of a time
delay simply requires multiplication of the frequency domain
data by a suitable exponential of the complex frequency before
the inverse Laplace transform algorithm is invoked.
Implementing such a time delay on a modal basis requires a
truncated series expansion of the complex exponential (such as
a Pad_: approximation), with many temas needed to obtain an
accurate representation.

3. OI'TIMAL CONTROL FORMULATION

With the continuum modeling approach described
above, it is possible to recast a class of optimal control

problems into a convenient foml, from which optimal control
trajectories are easily calculated. This foma is applicable to a
completely general frame-like structure (although applying this
method to structures containing plates and membranes is the
subjcct of current research Il), with multiple control inputs and
multiple outputs. The class of problems discussed here are
fixed-time, linear quadratic, open loop control problems with
penalties on control effort, position and velocity of various
output points on the structure, and structural deformation.
Thus, the cost functional has the foma

J = [y(tf)- YdlTll[y(tf) - Ydl
If

+ J'{ ly(tf)- YdlTQly(tf) - Ytl] + u(t)TRu(t)} dt
0

(12)

where !1, Q and R are weighting matrices, and Yd is the vector
of desired ouiput values. It should be noted that Ytl represents
the physical output variables of interest, and is not related to the
outputs of some state variable representation of the system.

Traditionally, the dynamics of the system ,are adjoined
to this functional via a costate vector as differential equation
constraints. However, because the structural transfer functions
are transcendental and infinite dimensional, a finite dimensional
costate vector cannot be defined. Tzafestas 2 succeeded in

identifying a distributed parameter optimal control solution
which incorporates an infinite dimensional costate. This
solution represents the distributed parameter analogue of the
Riccati differential equation for finite dimensional systems.
However, the method is not immediately applicable to complex
structures, where more than one partial differential equation is
involved. Even the case of a single beam in bending presents
considerable difficulty. 12

One alternative to adjoining an infinite dimensional
costate is modal truncation. The high frequency modes of the
structure are simply ignored, and the dynamics of the structure
is approximated with a finite dimensional state space
realization. However, in order to take advantage of the
"exactness" of the continuum modeling approach, it seems
appropriate to avoid modal truncation altogether. Instead, we
express each response as the convolution of impulse responses
with control inputs. This yields for the cost function

.33.7



J = [ifG(tf-'c)u(z)d,g-ydlTll[tifG(tf.,_)u(z)d,[.ydl

if

0

+ u(t)TRu(t) t dt (13)

where G(I) is tile matrix of impulse responses from each

control input to each output, as defined in section 2.3. These

convolution integrals need not be computed directly, as they are

the inverse transforms of the appropriate transfer functions

multiplied by the associated control inputs. Taking variations
in u, we are left with an integral equation which, except for a

vcry small number of special cases, is difficult or impossible to
solve in closed form. It is therefore necessary to express the

control inputs as weighted sums of an appropriate set of basis

functions which span the function space of allowable control

inputs. For fixed time problems, the Fourier series is a g_+d

candidate, leading to

Ff(t)Tcl

u(t) = [ f(t)Tc2.:

Lf(t)Tcm

cos m/tf (14)= F(t)Tc, f(t) = .:

sin Imt/tf

I.-.c o s nnt/tf

where

E Ic]f(t) fCt) c2

F(t) = ... , c = (151

f(t) e':m

The cost functional now dcpends only upon a constant vector,

c, representing the coefficients in the Fourier series expansions
of the control inputs. The resulting cost functional is quadratic

in the coefficient vector, and the minimization problem is
straightforward, yielding:

c = AtByd (16)

where

tf

A = Y(tf)TllY(tf) + _{Y(t)TQy(t) + V(t)TRF(t)}dt (17)
0

tf

B = Y(If)TII + j'{ Y(t)TQ} dt (18)
0

and t

Y(t) = J (; (t-'t) F(x) d_ (19)

Once again, the convolution of impulse responses with basis
function inputs can be calculated via the inverse Laplace

transform:

Y(t) = Lt{G (s) F(s)] (2(I)

Furthermore, these basis responses can be computed a priori,
provided that the forcing locations and structural defommtion

penalty locations are known in advance. This makes it possible
to try a large numbcr of cost functionals without repeatedly

calculating the responses to basis inputs. It should be

mentioned that a large anaount of memory is required to store
this data.

A unique advantage of this approach is that it readily

accommodates penalties in higher derivatives of both control

cffort and physical deformation. In the frequency domain,
differentiation merely requires muhiplication of the data by the
Laplace transform variable. The inverse transfommtion will

then produce the derivative of the original signal, ltigher order
deriwltives are obtained by multiplying by higher powers of the

complex frequency. Incorporating higher derivative penalties

in the traditional optimal control formulation is considerably
more difficult.

Special constrailus on the control histories are treated by
adjoining the constraints viii Lagrange multipliers. An example
is the requirement that the controls be continuous at the

beginning and end of Ihe maneuver. This implies that the

controls go to zero at the initial and final times. Two Lagrange
muhipliers are therefore introduced for each control input.
Pcrfonning the nfinimization, we obtain

_1 = F(0) T 0 0 (21)

}'+2 F(tf) T 0 0

where _-I and ?'-2 are Lagrange multiplier vectors corresponding

to the control constraints at the initial and final times,
respectively.

It should be noted that the only approximation in the

entire development involves expressing the control inputs in

terms of the basis functions. The dynanfics of the entire
structure is accounted for, since the impulse responses are exact

(insofar as the original equations represent physical reality).
Also, the structural defommlions are assumed to be small, so

that linearization does not introduce significant errors. As a

result, large angle slew maneuvers are not included in this class

of problems. It is possible, however, to express structural

defonnations with respect to a nominal condition during a large

angle slew, and then linearize about that reference.

It is important to note the difference between the
approxinaations made in the continuum approach and those

made in control systems based on finite element models.

Typically, a finite element model is used to determine a

truncated state space realization of the system. The control

systcru is then designed using standard methodologies, such as
linear quadratic regulator (LQR) or I-I thcory. The modeling
error associated with ruodal truncation must then be considered

in assessing the perfomaance of the system. In contrast to this,

the continuum approach retains all modes of the system and

therefore has no modcling error associated with it, provtdcd

that the original partial differential equations represent the
physical system exactly. The only limitation to this approach is
therefore the number of basis functions chosen to represent the

control signals. Using the Fourier series expansion essentially

places a limit on the bandwidth of the control inputs. If the

bandwidth of the physical controls are known in advance, the
number of basis functions used in the calculations can be

adjusted accordingly. The resulting control history would then

indeed bc optimal for that set of physical controls.
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4.1 Rigid MqSs. wiih Flexible Appendage

In an earlier analytical study by Skaar 6, tile open lexop

control of a rigid mass with a flexible appendage, shown in
Fig. 3, was studied. In his work, deformational penalties were
not incorporated into the cost function; rather, the terminal

conditions were adjoined to the cost functional as constraints.

Skaar derived analytical expressions for impulse responses of
the simple mass/appendage structure and thus obtained closed

foma optimal control solutions for the structure. Ills approach

does not readily generalize for more complex structures. In

contrast, the fommlation presented here readily generalizes for

realistic complex structures. Nevertheless, the mass/appendage

structure is used as a first example to validate the optimal
control formulation.

The maneuver involves translaling tile mass a distance

of 10 meters along the axis of the flexible appendage, bringing
it to rest with minimal residual energy and I)OSt-maneuvcr drift

after 20 seconds. The first case places terminal penalties on tile

final position and velocity of tile rigid mass and on a point 4/5

of the length along the flexible appendage. A small penalty is
also placed on control tale, and 17 basis fimctions are used to

approximate the control input. The results, shown in Fig. 4,
indicate that the terminal conditions are matched, and residnal

energy is minimized. The second case places additional

terminal penalties on points along the flexible appendage, as

well as en-route (integrated) penalties on smtctural defom_ation
at these points. As shown in Fig. 5, the magnitude of the

structural defommtion during the maneuver is reduced slightly
(about 15%), and large dcfonnation occurs over smaller

intervals of time, resuhing in a lower RMS displacement of the

tip of the appendage over the maneuver interval. The terminal

conditions are again matched. In the final case, the member

stiffness is reduced by a factor of four, so that the primary
modal frequency of the structure corresponds approximately

Fig. 3:
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Fig. 4: Rcsull_ of optimal maneuver of mass/flcxiblc appcndagc sysiclll

(case # 1): (a) control force app cc to rigid mass (b) position of rigid mass,
(c) II¢formation of tip of flexible _ptxmdagc wit//respect to posiliotT of
rigid mass.

with the frequency of tile first basis function of tile control

input. The results of this case, presented in Fig. 6, indicate that
the control input has been adjusted so that excitation of the

primary mode of the structure is suppressed, at the expense of
it_crcascd control effort. Again, the tem_inal conditions are

naatched, and residual internal energy is minimal.

,2
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Time (see)

4.2 Starfish Configuration

A typical model for a spacecraft with flexible
appendages is tile starfish configuration, shown in Fig. 7. It
consists of a rigid hub, to which four flexible arms are

attached. At tile end of each ann is a rigid mass. Conlrol

inputs are available at the hub and at the tips of two of the
flexible arms.

For this structural model, two maneuvers ,are presented.
The first is an in-plane translation of 0.1 meter in the direction

of one of the flexible appendages, with a final time of 5
seconds and all three control inputs available. Terminal

penalties are placed on the position and velocity of the hub, as

well as at three locations along the two arms whose axes lie in a
direction perpendicular to the motion. It is anticipated that the

control forces will excite bending vibration in these
perpendicular members due to their inertia. Identical magnitude



andvelocitypenaltiesarealsoplacedontilethreecontrol
inputs.TheresultsofthismaneuverareshowninFig.8.The
forcesprovidedbythethrustersatthetwoappendagesare
identical(exceptfortheirsign)anddifferslightlyfromthe
controlhistoryofthethrusteratthehub.Thisdiscrepancy
compensatesfortheinertiaoftheflexibleanns,bringingIhe
systemtothefinaldesiredstatewithminimalresidualenergy.

Thesecondmaneuverinvolvesasmall(0.1 radian)

counter-clockwise in-plane rotation about the hub in addition to
the translation of the previous maneuver, in order to

demonstrate the ability of the optimal control approach to
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Fig. 5:Result5 of optimal maneuver of mas_nexible appendage system
(case #2): (_) control force applied to rigid mass. (b) position of rigid mass,

(c) deformation of tip of flexible appendage with respect to position of
rigid mass.
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Fig. 6: RcsulL_of optimal maneuver of ma,_/flexiblc al_cndage syxtem

with reducedaxial stiffness (ca_ #3): (,_)control force applied to rigid

mass, (b) position of rigid mas._.(e) deformation of tip of flexible
apper_lage with respect to position of rigid mzt_.

handle multiple final conditions. Here, only the lateral forces at

the tips of two of the appendages are available. Also, tem_inal

position and velocity penalties are placed on two points along
all four arms, as well as on the central hub, and the final time

remains unchanged. The results are presented in Fig. 9.

Again, the incorporation of state penalties involving structural
defom_ation succeeds in minimizing residual interual energy at

the temainal time. As previously mentioned, the linear control

solution applied to this type of maneuver is only appropriate for
small rotations and angular rates. For large rotations, nonlinear

kinematics must be considered, whereas for large angul,'u" rates,

gyroscopic forces become significant.
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Fig. 9: Optimal inaneuver of starfish involving translation and rot,ation:
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line), (11)translation of central hub, (c) rotation of central hub.

4.3 SCOLE Structure

The final example is a complex three dimensional
structure proposed by NASA as a design challenge. 13 The

Spacecraft COntrol Laboratory Experiment, shown in Fig. 10,

consists of a rigid shuttle and hexagonal truss antenna
connected by a flexible mast. Previous authors have treated the

antemm as being rigid. In this paper, however, the flexibility
of the antenna is considered. Figure 11 shows the transfer

functions from a torque applied to the shuttle along about the
axis of the mast to v,'u-ious points along the mast and antenna

for both the rigid and flexible antenna models. A validation of
this structural model with a traditional finite element code is
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current]y underway. As indicated in the figure, the flexibility
of the antenna has a considerable effect on the transfer

functions at higher frequencies. It is therefore appropriate to

include a dynamic model for the anlcnna when applying the
optimal control algorithm.
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Fig, 10: "]'he SCOLE expcrilnent: (a) Shuttle and flexible mast

properties, (b) flexible antenna model used in this study.
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Fig, I I : Some transfer functions from control torque applied to

shuule along mast axis to incrtial accelerations at various point,; 011
SCOLE structure for a rigid antenna (_lid lines) and for a flexible antenna

(dotted lines): (a) torsion of midpoint of mast, (b) torsion of mast at

antenna junction, (c) transverse deflection of mast in pitching direction at

antcnna junction, (d) deflection, in plane of antenna, of antenna hub.

The SCOLE maneuver presented here consists ofa 0.1
radian rotation about the z-axis of the shuttle. The three

dimensional model used in the optimal control formulation

incorporates 52 partial differential equations, which account for

axial, torsional, and bending vibration in the mast and each of
the twelve antenna elements. The shuttle is modeled as a

massive rigid body with six degrees of freedom. Torque
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controls directed along tile z-axis are placed at either end of the
mast. Due to the asymmetry of the structure, bending/torsion

coupling is expected. Consequently, roll and pitch tOalUe
controls are also located on the shuttle. In the cost functional,

equal magnitude and rate penaltics are placed on all four
controls. Large tenninal penalties arc applied to thc roll, pitch

and yaw angles of the shuttle, as well as the torsional
deformation of the mast at its midpoint and at the mast/antenna

junction. The maneuver time is ten seconds.

The results of the SCOLE slew are shown ira Fig. 12.

Because of the conventions used in defining the axes at the

nodal points, the torques applied to the ends of the mast are

opposite in sign. The physical torques are, however, applied in
the same direction. From the figure, it is clear that, although

the shuttle has rotated the prescribed amount, there is a small

amount of residual torsional energy in the stntcture. This

energy is due primarily to the dcfommtion of the antenna. It is

cxpccted that additional penalties on structural dcformation
placed at varions points on the antenna will significantly reduce

this residual eucrgy.

5. CONCLUSIONS

The open loop optimal control algorithm has bcen

demonstrated for several structural mc_els. The generality of

the approach has becn exploitcd in applying the algorithm to a
complex structure. Furthcmaore, the ability of this approach to

handle constraints and derivative penalties has been

demonstrated. One major issue concerning this open loop

method is modeling error. Because the approach prescntcd is
open loop, this fomaulalion makes no guarantees on the

perfonnance of lhe actual structure, for which the mathenmtical

abstraction is only an approximation. The necessary sensitivity
analysis and closed loop formulations are topics of current

research. It may also be possiblc to incorporate an adaptive

identification algorithm to adjust the model in such a way as to
minimize modeling error.

If the optimal control )roblcm has an infinite time

horizon, it is possible to use different set of basis functions to

converge on a solution. Candidate bases include Legcndre and

Lagtterre functions, which are linear combinations of
exponentials and other decaying functions. 14

A method for incorporating distributcd penalties into the

optimal control algorithm is one topic of current research.
Rather than penalizing certain points along a ptu'ticttlar flexible

element, an integral over the entire element, subject to some

Lo _ ,f" "''L,

Time (see)

(a)

__ o*

- _ o

- t_n o

/

o¢ ** mo ,_o

Time (sec)

(tO

Ir"
a+_

uo

+

,/
/

f_

j+

/

Time (sec)

(c)

_°_

:",,

l +,

T_me _sec)

Fig. 12: Results of optimal SCOLE maneuver: (a) yaw torque

applied to shultle (solid line) and mast/antenna junction (dotted line), (b)
roll torque (solid line) and pitch torque (dotted line) applied to shuttle, (c)

yaw rolntion of shuttle, (d) relative torsional deflection of mast at midl_int
(solid line) and at inast,/antenna junction (dolled line).

weighting function, bccolltcs part of thc cost functional. Such
a capability would make it possible to develop controls that

minimize the total (kinetic plus potential) energy within the
sln_ct_rre in a continuous sense, rather lhan penalizing a large

number of points within each flexible element.
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Work is currcntly underway to extend the basic
modeling approach to contint, ous plate and membrane
elements. This capability wilt pemait modeling and control
formulations for the NASA space station class of large space
structures.
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